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E. DOKUMACI

Department of Mechanical Engineering, Dokuz Eylul ;niversity, Bornova, Izmir, ¹urkey

(Received 2 February 2000, and in ,nal form 30 May 2000)

The previous work on sound power calculation in the presence of a mean #ow has been
focused on the casting of the basic acoustic equations in the form of an acoustic energy
conservation law from which a de"nition of the acoustic intensity is extracted. The present
paper shows that such de"nitions of sound intensity are deducible from the physical
de"nition of sound power. Also presented is an expression or the sound power in a narrow
pipe with a uniform mean #ow.
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1. INTRODUCTION

A quantity that is often of interest in acoustic analysis is the sound power transmitted
through a given surface area. The mathematical de"nition of sound power, =, crossing
surface S is

="P
S

SNT ) ndS, (1)

where N denotes the acoustic intensity vector, n is the unit normal vector to surface S and
S T denotes time averaging. For an ideal and quiescent medium, it is well established that
the sound intensity vector is given by

N"pv, (2)

where p is the acoustic pressure and v is the acoustic particle velocity. Thus, acoustic power
has a physical de"nition as time-averaged acoustic energy crossing a surface per unit time.
Although this de"nition is valid generally, no one appears to have used it ab initio for sound
power or intensity calculation in the presence of a mean #ow, the previous work having
been focused rather on the casting of the basic acoustic equations in the form of an acoustic
energy conservation law from which the de"nition of the acoustic intensity vector is
extracted. A discussion of this approach, which makes the de"nition of sound intensity to
some extent arbitrary, has been given by Morfey [1], who has also derived an acoustic
energy conservation law in the presence of a rotational mean #ow.

The physical de"nition of sound power applies regardless of acoustic energy conservation
considerations. The present paper will show that Morfey's de"nition can be deduced from
the physical de"nition of sound power and that a similar de"nition of sound intensity is also
deducible from Doak's momentum potential theory [2]. The paper also presents an
expression for the sound power in a circular or rectangular narrow pipe with a uniform
mean #ow.
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2. GENERAL CONSIDERATIONS

From the physical de"nition of sound power, the sound intensity vector can be de"ned
formally as

N"C(o*v*) A
v* ) v*

2 B#p*v*D
@

A

, (3)

where o* is the #uid density and the subscript A denotes an acoustic part. Throughout the
analysis, an asterisk (* ) denotes a quantity that consists of a sum of a mean part and
a #uctuating part with zero mean; a prime ( @) or, when applicable, dropping the asterisk,
denotes a #uctuating part, and the subscript &o' without the asterisk denotes a mean part.

In equation (3), the "rst and second terms represent the kinetic energy #ux and the
compression strain energy #ux in the #uid, respectively, due to acoustic motion of the
particles. The normal component of this total energy #ux is available for transmission over
a unit surface area to the neighboring #uid particles as sound waves. In an ideal #uid, this
transmission occurs without any energy loss, but in a real #uid, some dissipation is always
present due to viscosity and thermal conductivity. In either case, the local acoustic energy
#ux is given by equation (3).

It is convenient to write equation (3) brie#y as the "rst of the equations

N"[m*P*]@
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, (4)

Here, m* is called the momentum density and P* is known in thermodynamics as exergy.
Implementation of equation (4) depends on the information available about the
#uctuating quantities. Two cases that are of interest here are (1) acoustic components of the
#uctuations are known, and (2) the total #uctuations are known. These are considered
separately in the following. The analysis is based on small perturbation formulation of
acoustic equations with non-linear e!ects neglected. Insofar as the calculation of the sound
power is concerned, the "rst order terms in the energy #ux need not be considered because
they will vanish upon time averaging. For this reason, throughout the analysis, the "rst
order terms in N are tacitly omitted and only the second order terms are given.

2.1. COMPUTATION OF SOUND INTENSITY WHEN ACOUSTIC FLUCTUATIONS ARE KNOWN

Typically, this case arises when one solves the basic acoustic equations with or without
mean #ow. In this case, equation (4) can be expressed as

N"mP, m"o
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p
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o

, (5)

where the mean and #uctuating quantities come from the problem solution. Clearly, the
results of equation (5) can be accurate to the extent to which the problem solution is
accurate. An application of equation (5) to sound propagation in a narrow pipe with a mean
#ow is presented in section 3.

2.2. COMPUTATION OF SOUND INTENSITY WHEN THE FLUCTUATIONS ARE KNOWN

This case arises when the #uctuations are measured, or computed by solving the basic
#uid dynamic equations. Equation (5) will be valid in this case, too, if the mean #ow "eld is
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known to be irrotational so that the #uctuations are due only to acoustic motion.
Otherwise, it is necessary to separate the acoustic parts of the #uctuations. Two approaches
that can be used for this purpose are considered in the following.

2.2.1. Analysis based on partitioning of velocity -uctuations [1]

First, assume that the acoustic part of the density #uctuations comes only from the "rst
term of the thermodynamic state equation

do*"
dp*

c*2
#A

Lo*

Ls*Bds*, (6)

where s* is the speci"c entropy and c* is the speed of sound. This is tantamount to assuming
isentropic sound waves for which the following relationship holds:

o"
p

c2
o

. (7)

Thus, the e!ects of viscosity and thermal conductivity on density #uctuations are neglected
in this approach. These e!ects are generally con"ned to acoustic boundary layers, or
become discernible only after long distances.

The velocity #uctuations are then partitioned as

v"u#w, + )w"0, (8)

where the irrotational part, u, is assumed to be the acoustic particle velocity. This separates
the turbulent component of the #uctuating velocity induced by vorticity, but its acoustic
component induced by viscosity is lost as well in this process. The e!ect of this loss is
assumed to be ignorable.

Hence, equations (4) become
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. (9)

This result coincides with Morfey's de"nition of acoustic energy #ux [1].

2.2.2. Analysis based on partitioning of momentum density and exergy -uctuations [2]

The #uctuating part of the momentum density can be partitioned as

[m*]@"B!+ (t#u), + )B"0, (10)

where the irrotational component, !+ (t#u), is assumed to consist of acoustic and
thermal components !+t and !+u respectively. This is justi"ed by the fact that, in
terms of the #uctuating part of the momentum potential, t#u, the mass transport
equation can be expressed as [2]

+ 2(t#u)"!iuo, + 2t"

!iup

c2
o

, (11)
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where the second equation follows from equation (6), by the assumption that the acoustic
part of the #uctuating momentum potential is due to only the pressure #uctuations. Upon
assuming further that the solenoidal component of the #uctuating momentum density has
no acoustical part, which is tantamount to neglecting the visco-thermal e!ects, the acoustic
component of momentum #uctuations can be expressed as

m"!+t, (12)

where t is determined by the second of equations (11).
To partition the #uctuating exergy, it is "rst noted that
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Then, by using equation (12) for the acoustic component of the momentum #uctuations,
and invoking equation (7) approximately as the acoustic component of the density
#uctuations on the right-hand side, the acoustic component of exergy #uctuations can be
expressed as
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o

, (14)

where M
o
is the magnitude of the local mean #ow velocity Mach number. Thus, equations

(4) become
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This result is contained in reference [2], although it is not given speci"cally as a de"nition of
sound intensity.

3. SOUND POWER IN A NARROW PIPE

This section presents an application of equation (5) for the calculation of sound power in
the fundamental mode propagation in a uniform narrow pipe carrying a uniform mean
#ow. The solution of this problem and the underlying theory is described in reference [3]. In
this case, the sound "eld is obtained by superimposing two waves traveling in opposite
directions, the axial component of acoustic particle velocity and the acoustic density of
which are given by

o
o
c
o
v$

x
(x, r)"h$ (r)p$(x), c2

o
o$ (x, r)"g$(r)p$(x), (16)

where x denotes the pipe axis, the superscripts$refer to the acoustic pressure
wave components traveling in $x directions, r denotes the radial co-ordinate, the
functions h$(r) and g$(r) are given in Appendix A and the usual exp(!iut) time
dependence is assumed for all #uctuating quantities. By substituting the foregoing
equations into equation (5), the normal component of the intensity vector for the



CALCULATION OF ACOUSTIC POWER 873
superimposed "eld is obtained as
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o
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o
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where M
o

denotes the mean #ow velocity Mach number. Hence, from equation (1), the
sound power crossing a cross-section of the pipe in the #x direction is obtained as

2o
o
c
o
="AM `

R
Dp` D2#BM

R
Dp`p~ D#AM ~

R
Dp~ D2, (20)

where an overbar denotes a cross-sectional average and the subscript R denotes the real
part of a complex quantity. Clearly, the "rst and last terms on the right-hand side of
equation (20) correspond to sound power of the waves traveling in forward and backward
directions respectively. For the inviscid and quiescent case, the factors reduce to AM $"$1
and B"0. For the inviscid case with a uniform mean #ow, they reduce to the well-known
result that follows from Morfey's de"nition of sound intensity:

AM $"$(1$M
o
)2, BM "0. (21)

This result can also be deduced by applying equation (15). Thus, in the inviscid case, the
sound "eld in the pipe is &canonical'; that is, BM "0, which means that the sound power of
a re#ective "eld is equal to the algebraic sum of the powers of the forward and backward
waves. Another case of a canonical sound "eld occurs when the mean #ow velocity is zero.
For this case, it can be shown that, for example, for a circular pipe,

AM $
R
"C

!K$J
2
(sJi )

J
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(sJi) D

R

, BM "0, (22)

where K$ denote the propagation constants, s is the shear wavenumber and J
n

denotes
a Bessel function of order n. For large s, say s'40, equation (22) can be expressed
approximately as

AM $
R
"$C1!

1

sJ2 A1!
c!1

p BD , (23)

where c is the ratio of speci"c heat coe$cients and p is the square root of the Prandtl
number (see Appendix A for the de"nition of the parameters in the foregoing equations).
For example, for c"1)4 and p2"0)7, the factors are larger than 99% in absolute value for
s'40. Thus, in this case, the visco-thermal e!ect on sound power is negligibly small, as
expected.

With mean #ow and visco-thermal e!ects present, however, the sound "eld is no longer
canonical and the factors AM $

R
may be reduced considerably. This is shown in Figure 1,

where the factors AM $
R

and BM
R

of a circular pipe are shown as functions of the Stokes number
and the mean #ow Mach number. As can be seen from these characteristics, the absolute



Figure 1. Sound power factors for a circular pipe with p2"0)7 and c"1)4.

Figure 2. E!ect of the aspect ratio on the sound power factor for a rectangular pipe with zero mean #ow,
p2"0)7 and c"1)4.
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value of these factors vary approximately linearly for s(3, and gradually tend to their
inviscid values given by equation (21) as s increases. The shape of the pipe cross-section may
have a slight e!ect on these characteristics. To give an idea of the amount of deviations that
may occur due to the shape of the pipe cross-section, the factor AM `

R
is shown in Figure 2 for

rectangular pipes with di!erent aspect ratios for the case of zero mean #ow, and the factors
AM $

R
and BM

R
are shown in Figure 3 for M

o
"0)1. It should be noted that, the aspect ratios

a/b"0)1 and 0)5 correspond to the same cross-sections as the aspect ratios a/b"10 and 2,
respectively, the characteristics look di!erent only because the Stokes number is based on
side a. Thus, it is seen that the e!ect of a 10 fold change in the aspect ratio amounts to
approximately less than about 20% change in the magnitude of the factors AM $

R
and BM

R
.



Figure 3. E!ect of the aspect ratio on the sound power factors for a rectangular pipe with mean #ow, M
o
"0)1,

p2"0)7 and c"1)4.

CALCULATION OF ACOUSTIC POWER 875
4. CONCLUSION

Morfey's de"nition of sound intensity is shown to be deducible from the physical
de"nition of sound power. The partitioning proposed by Doak yields an alternative
de"nition of sound intensity. When the acoustic "eld is known, equation (5) can be used
directly to compute the sound power. The sound power in a narrow pipe with a uniform
mean #ow is thus computed for the "rst time.
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APPENDIX A: SOUND WAVE TRANSMISSION IN A NARROW PIPE

Summarized in this appendix are the expressions that are relevant to computation of
sound power in a uniform narrow pipe with a uniform mean #ow. The underlying theory is
described in reference [3].

The propagation constants K$ are computed from the dispersion equation

c#(c!1)I(pba)#A
K

1!M
o
KB

2
I(ba)"0, ba"sJi(1!KM

o
). (A.1)

Here a denotes a characteristic dimension of the pipe cross-section, I is a function that
depends on the pipe cross-section, c is the ratio of speci"c heat coe$cients, p2 denotes the
Prandtl number, p2"kc

p
/i, where k is the shear viscosity coe$cient, c

p
is the speci"c heat

coe$cient at constant pressure and i is the thermal conductivity, s is the Stokes number,
which is de"ned as s"aJ(o

o
u/k), where u is the radian frequency.
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Circular pipes:

h$(r)"C
K$

1!M
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o
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J
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g$(r)"1#(c!1)C
J
o
(pb$r)

J
o
(pb$a)D , (A.3)
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J
2
(m)

J
o
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, (A.4)

where a is the pipe radius, r is the radial coordinate and J
n

denotes a Bessel function of
order n.

Rectangular pipes:

h$(y, z)"C
16

n2

K$

1!M
o
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m,n/1,3,2

sin(mny) sin(nnz)

mna
mn
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, (A.5)

g$(y, z)"Cc!(c!1)
16

n2D +
m,n/1,3,2
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mna
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, (A.6)

a
mn

(m)"1!n2(m2#n2a2/b2)/4m2, (A.7)

I (m)"!
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n4
+
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1

m2n2a
mn

(m)
, (A.8)

where the pipe cross-section occupies the region 2a*y*0 and 2b*z*0.
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